حسگر زیستی سیستمی با اندازه کوچک، حساسیت بالا وقابل حمل بوده که میتواند آنالیت مورد نظررا درغلظتهای بسیار کم در نمونههای بیولوژیک اندازه گیری کند. دو عامل در طراحی یک حسگر زیستی مناسب نقش ایفا میکند:
۱-روش مناسب تثبیت دریافتگر زیستی در سطح جامد که موجب افزایش طول عمر، حساسیت و پایداری آن میگردد.
۲-انتخاب مبدل مناسب.
استفاده از حسگرهای زیستی به دلیل دقت و حساسیت روشو همچنین در مواردی به دلیل عدم نیاز به وسایل پیشرفته و صرف زمان و هزینه زیاد برای تشخیص آنالیتها در مراکز کوچک و در مراکز با امکانات کم و حتی در منزل نیز کاربرد دارد. این روشها میتوانند در شناخت مکانیسم برخی بیماریها و اختلالات، در امر تشخیص و درمان بیماریها و عوارض آنها و شناسایی علل و زمینههای به وجود آورنده آنها و نیز در سایر علوم مرتبط نظیر داروسازی، سامانههای پیشرفته دارورسانی و شناسایی داروهای جدید و ارزیابی فعالیت بیولوژیک آنها فعالیّت نماید.
( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. )
جزئیات فنی حسگر اپتیکی تشدیدگر پلاسمون سطح:حسگر تشدید پلاسمون سطح (SPR)مناسبترین ابزار برای تحلیل برهمکنشهای انواع مختلفی از مولکولهاست. ساده ترین و متداول ترین این برهمکنشها، برهمکنش پادتن-پادگن است.
این سامانهها بر اساس آشکارسازی مدولاسیون مکانی فاز (SMPD) است. در این سیستم نور تکفام موازی به منظور برانگیختن SPR استفاده میشود و فاز نور بازتابی به صورت مکانی مدوله شده تا یک طرح تداخلی ایجاد کند. در روابط پرتوهای تداخلی φ اختلاف فاز بین پرتوها، I شدت پرتوها، و f فرکانس فضایی خطوط تداخلی است.
نمونههای تجاری امروزی این نوع حسگرها بر اساس شدت آشکارسازی نور کار میکنند که بسیار مکانیزم سادهای دارد، اما خطاهای موجود در منبع نوری، آشکار ساز نور و تقویت کننده موجب کاهش دقت حسگر شده و بیشتر از چیزی در حدود ۱۰^-۶ (RIU) نخواهد بود. به منظور افزایش دقت حسگر به جای اندازه گیری شدت، تغییرات فازی را اندازه گیری میکنند. همچنین برانگیختن حسگر باعث افزایش سرعت تغییر شدت و فاز میگردد.(دقت: ۱۰^-۴ (RIU))
اجزای SPR
لیزر He-Ne، ۶۳۲.۸nm ۲. دریچه ۱۰ میکرومتری(واقع در فاصله کانونی لنزها)، آلمینیومی ۳. بسط دهندهٔ پرتو ۴. صفحه موج ½ ۵. دیافراگم مثلثی ۶. منشور متساوی الاضلاع کریشمان (شیشه ZF5، ضریب شکست ۱.۷۴۰) ۷. تراشه حسگر ۸. سلول جریان ۹. منشور ولاتسون (زاویه جدایی.۳ درجه) ۱۰. منشور قطبنده ۱۱. لنز تصویرساز ۱۲. دوربین CCD متصل به رایانه ۱۳. رایانه
اساس کار حسگرهای اپتیکی بر پایه تغییر ضریب شکست نور در مرز منشور(فیبر) که در تماس با لیگاند است میباشد. به منظور افزایش جذب انرژی نور و دقت بیشتر یک لایه فلز (معمولا طلا) بر روی سطح منشور (فیبر) استفاده میکنند. حسگر فیبری SPR:در حسگر فیبری به جای استفاده از منشور از فیبر استفاده میشود. مزیت این نوع حسگر اندازه کوچک آن است. عملکرد فیبر نیز به همان شکل تغییر در ضریب شکست و فاز پرتوی بازگشتی است. در این شکل فیبر از قسمت نازک تر در تماس محلول مورد بررسی قرار گرفته، نور عبوری از فیبر (که دائما در حال بازتاب داخلی در فیبر است) در اثر وجود ویروس مورد نظر در محلول و قرار گرفتن بر روی لیگاند، دچار تغییر ضریب شکست شده و پرتو خروجی تغییر فاز نشان میدهد. با اندازه گیری شیفت در طول موج نور خروجی، به میزان غلظت ویروس و یا وجود یا عدم وجود ویروس پی میبریم. همچنین در قسمت زیرین فیبر از یک کره استفاده شده که باعث رفت و برگشت بیشتر نور و در نتیجه تقویت پرت میگردد.
برای ساختن تیپ فیبر را به مدت حدودا ۴۵ دقیقه در ۱۴۰۰ml اسید HF %48 به همراه ۸۰۰ ml روغن قرار داده و سپس توسط NaOH اسید را خنثی و تیپ را میشویند. هرچه تیپ متقارن تر باشد پرتوی خروجی از آن دارای شکل متقارن تری است و در اندازه گیری دقت بیشتری به دست میدهد.
کاربردهای SPR
بررسی DNA به منظور کشف هرگونه نقص ژنتیکی و یا ابتلا به سرطانها در بدو تولد.
در این روش با مقایسه طیف DNA با طیف ناشی از DNA دارای نقص در ترتیب که منجر به ایجاد سرطان میشود، از بدو تولد میتوان از ابتلا به سرطان و یا سایر بیماریهای ژنتیکی اطلاع یافت.
به دست آوردن غلظت محلولی (گلوکز خون):
در این روش مخصوصا با تلفیقی از MEMSاز کپسولهایی استفاده میشود که با کاشت در بدن میتوانند اطلاعات مربوط به بیمار را به طور لحظهای به رایانه شخصی وی ارسال کنند.
حسگرهای زیستی نانومکانیکی
اگر چه استفاده از حسگرها قدمت زیادی دارد، اما در سال های اخیر نانوفناوری نقش مهم و فزاینده ای در توسعه آنها ایفا کرده است. نانوحسگرهایی که بخش اصلی حسگر در آنها ماهیت زیستی داشته باشند، با اسم نانوحسگر زیستی(Nano-biosensor) شناخته می شوند. نانوحسگرهای زیستی به دلیل دارا بودن اندازه نانومتری می توانند سنجش در محیط های زیستی را آسانتر، حساس تر و سریعتر انجام دهند.
حسگرهای زیستی ابزارهای تجزیه ای هستند که دارای سه جزء اصلی عنصر زیستی، مبدل و سیستم قرائت می باشند. عضو زیستی از گزینشپذیری بالایی برای برهم کنش زیستی و آشکارسازی آنالیت (ماده مورد تجزیه) برخوردار است. مبدل فیزیکی (Transducer) پدیده شناسایی را به یک اثر قابل اندازه گیری مانند سیگنال الکتریکی، نشر نوری یا حرکت مکانیکی تبدیل می کند. این اثر در نهایت توسط سیستم قرائت اندازه گیری می شود. نانوکانتیلورها و میکروکانتیلورها می توانند تعدادی از پدیده ها نظیر تغییرات جرم، دما، گرما، فشار و رطوبت را به انحراف (شیوه استاتیک) یا تغییر در فرکانس رزونانسی (شیوه دینامیک) تبدیل کنند. کانتیلورها در ساختمان زیست حسگرها بعنوان مبدل سیگنال شیمیایی به حرکت مکانیکی با حساسیت بالا بکار می روند. کلید استفاده از میکروکانتیلورها برای آشکارسازی گزینشی مولکول ها قدرت عاملدار کردن سطح کانیتلور است.
میکروکانیتلورها در آشکارسازی مواد شیمیایی مانند ترکیبات فرار، مواد منفجره، گونه های یونی، سموم، آلاینده های غذا و محیط، آفت کش ها و مواد زیستی مانند آشکارسازی DNA و پروتئین و گلوکز و … بکار می روند.
نانوساختارهای مختلفی در ساخت نانوحسگرهای زیستی استفاده می شوند که بعضی از آنها عبارتند از: نانوذرات، نقاط کوانتومی، نانولوله ها، نانوفیبرها و نانو سیم ها.
اجزای اصلی زیست حسگر
حسگرهای زیستی ابرازهای تجزیه ای هستند که دارای سه جزء اصلی عنصر زیستی(به عنوان جزء اصلی تشخیص دهنده یونها یا مولکولهای هدف)، مبدل (Transducer) و سیستم قرائت(Read out System) می باشند. در حسگرهای زیستی، عضو زیستی با روش های مختلف روی مبدل تثبیت(Immobilize) شده است . این عضو زیستی از گزینش پذیری بالایی برای برهم کنش های زیستی و آشکارسازی آنالیت برخوردار است (در سیستم های زیستی بین گیرنده و لیگاند مربوط به آن ارتباط اختصاصی وجود دارد که نمونه جالب آن رابطه کاملا اختصاصی بین آنزیم و پیشماده (Substrate) آن می باشد. بدین معنا که آنزیم فقط پیشماده خاص خود را می پذیرد و واکنش موردنظر را تنها بر روی پیشماده ویژه کاتالیز می کند. این ویژگی از تطابق ساختار جایگاه فعال آنزیم (Active site) با ساختار پیشماده ناشی می شود. مبدل فیزیکی پدیده شناسایی را به یک اثر قابل اندازه گیری مانند سیگنال الکتریکی، نشر نوری یا حرکت مکانیکی تبدیل می کند. این اثر در نهایت توسط سیستم قرائت اندازه گیری می شود.
معمولترین عضو زیستی در زیست حسگرها آنزیم ها، آنتی بادی ها، اندامک ها، گیرنده ها و اسیدهای نوکلئیک هستند که با اتصال ویژه به آنالیت موردنظر امکان تجزیه کمی و کیفی آن را فراهم می آورند.
مبدل های معمول در ساخت زیست حسگرها شامل انواع نوری، الکتروشیمیایی، ترمومتری، پیزوالکتریک و … می باشند که به ترتیب سیگنال ایجاد شده را به علایم نوری،الکترونیکی، تغییرات گرمایی و نوسانی تبدیل می کنند.
این حسگرها بر مبنای نوع جزء زیستی، نحوه کار مبدل یا کاربرد آنها تقسیم بندی می شوند .
امتیازات و عوامل پیشرفت زیست حسگر ها
در اوایل ۱۹۶۰ کلارک و لایونز و آپدایک و هیکز اولین زیست حسگرها را بر مبنای برهمکنش کاتالیتیکی ویژه آنزیم گلوکز اکسیداز با گلوکز توسعه دادند. بعد از آن رشد سریعی در مطالعه فعالیت ها در این زمینه اتفاق افتاد که باعث پیشرفت بزرگی در توسعه ابزارهای حسگر برای اندازه گیری مولکول های زیستی در زمینه های مختلف صنعتی، دارویی، بالینی و کنترل های محیطی گردید.
پیشرفت در میکروفناوری و نانوفناوری پیشرفت حسگرهای بسیار حساس (با توانایی آشکارسازی خمیدگی های در حد نانومتر)، با امتیاز کوچک بودن (امکان سنجش آسانتر محیط های زیستی) را منجر شد. توانمندی بالا، قابلیت اطمینان، صرف انرژی کم، صرفه جویی در زمان و قیمت و آنالیت از مزایای استفاده از این نانو زیست حسگرهاست. سهولت و سرعت بالای اندازه گیری، تکرارپذیری، عملکرد اختصاصی، قابلیت حمل، امکان ساخت آرایه های چند عنصری برای اندازه گیری همزمان و قرائت چندین نمونه، حساسیت بالا و امکان جمع شدن با فناوری میکروالکترونیک از دیگر مزایا میباشند. این روش آشکارسازی نیاز به نشاندار کردن (Labeling) ندارد.
معرفی زیست حسگرهای نانومکانیکی
میکروکانتیلورها برای میکروزیست حسگرها و نانوزیست حسگرها بسیار امیدبخش هستند و از کانتیلورهای مورد استفاده در میکروسکوپ نیروی اتمی Atomic Force Microscopy-AFM)) مشتق می شوند. کانتیلورها سکوهای فنری در اندازه های نانو و میکرو می باشند و بر مبنای انحراف سکو و یا تغییر فرکانس رزونانسی حاصل از حضور آنالیت در سطح کانتیلور عمل می کنند.
زمانیکه یک برهمکنش زیست مولکولی در سطح آنها اتفاق می افتد میکروکانتیلور شناسایی مولکولی زیست مولکول ها را به اشارات نانومکانیکی ترجمه می کند که بطور رایج به یک سیستم قرائت نوری (Optical Readout System) یا پیزورسیستیو (Piezo-Resistive Readout System) بعنوان مبدل نیروی مکانیکی به جریان الکتریکی کوپل می شود. میکروکانتیلور مثال جالبی از همراهی نانوفناوری و زیست فناوری است . حسگرهای مبتنی بر کانتیلوردر محیط هوا, خلا و مایع عمل می کنند.
توسعه زیست حسگرهای مجتمع (Integrated) برای آشکاسازی همزمان گونه های مهم زیستی منجر به مفهوم زیست تراشه ها (Biochip) شده است که به عنوان بسترهای دارای میکرو آرایه های زیست پذیرنده ها (Bioreceptor) تعریف می شوند. زیست تراشه های حاوی نانو و میکروکانتیلورها بعنوان عناصر حسگر به نیروی خارجی، نشان دار کردن (Labling) و مولکول های فلورسان نیاز ندارند .
امروزه طیفی از حسگرهای فیزیکی، شیمیایی و زیستی قرار گرفته روی سکوی کانتیلور مورد مطالعه هستند. اگر چه آشکارسازهای منفرد بر مبنای کانتیلورها توسعه یافته اند ولی یک آرایه (Array) از چنین حسگرهایی می تواند اطلاعات فزاینده ای فراهم کند که توسط ابزارهای منفرد قابل دسترسی نیستند. حسگرهای میکروکانتیلور چندعاملی (Multifunctional) با تنوعی از پوشش ها امکان اندازه-گیری مخلوطی از بخارات را با حساسیت بالا فراهم می کنند. تنوعی از پوشش ها و ضخامت ها می توانند برای آشکارسازی بخارات شیمیایی بکار روند. پاسخ آرایه می-تواند برای شناسایی مخلوطی از اجزای شیمیایی بکار رود. استفاده از آرایه ها روی یک تراشه و بدست آوردن مجموعه ای از اطلاعات سبب سهولت نصب و ساخت، استفاده سیار از سیستم، کاهش هزینه و نیرو در طیف وسیعی از کاربردها از صنعت تا محیط زیست را فراهم می کند .
پیشرفت های آینده بهینه سازی ابعاد و شکل کانتیلور را برای رسیدن به کارایی های ویژه شامل میشود. حساسیت فشاری، جرمی و دمایی حداکثری، استفاده از آرایه کانتیلورهای موازی که با معدل گیری از نتایج آنها نسبت S/N (نسبت پاسخ حسگر به مولکول هدف (سیگنال) به پاسخ های بی هدف (نویز) که هرچه بیشتر باشد کارآیی حسگر مطلوب تر است)افزایش می یابد، آنالیزهای چندگانه با کانتیلورهای با پذیرندههای مختلف, ساده تر کردن قسمتهای مختلف و تجمع آنها از این دستهاند.
استفاده های جاری از زیست حسگرها به دنبال ابزارهایی است که قادر باشند توسط هر کس در هر جایی و برای آزمایش هر چیزی در زمان واقعی و با هزینه جزئی عمل کنند. برای قابل حمل بودن زیست حسگرها، حذف اثرات محیط و خودکارسازی عملکرد زیست حسگر ضروری است .
عملکرد کانتیلورها
کانتیلورها می توانند تعدادی از پدیده ها نظیر تغییرات جرم، دما، گرما، فشار و رطوبت را به انحراف (شیوه استاتیک) یا تغییر در فرکانس رزونانسی (شیوه دینامیک) تبدیل کنند و در ساختمان زیست حسگرها بعنوان مبدل سیگنال شیمیایی به حرکت مکانیکی با حساسیت بالا بکار می روند . جذب سطحی مولکول ها وقتی به یکی از سطوح کانتیلور محدود می شود فشار سطحی اختلافی تولید می کند که کانتیلور را خم می کند و همزمان فرکانس رزونانسی کانتیلور به خاطر بارگذاری تغییر می کند. خمیدگی و تغییر در فرکانس رزونانسی می تواند توسط چندین تکنیک: خمیدگی محور نوری (Optical Beam Deflection)، مقاومت پیزو (Piezoresistivity) ، پیزوالکتریستی (Piezoelectricity)، تداخل سنجی (Interferometry) ، تغییرات ظرفیت خازنی (Capacitance) و … نمایش داده شوند.
اساس حسگری با توجه به وسیله، مولکول های آنالیت و دقت مورد نیاز متنوع است . بطور کلی حسگرهای شیمیایی اغلب بر مبنای شیوه تبدیل، به چهار زمینه عمده الکتروشیمیایی (Electrochemical)، نوری (Optical)، حساس به گرما (Thermosensitive) و حساس به جرم (Mass Sensitive) طبقه بندی می شوند. پاسخ حسگرهای حساس به جرم، با جرم آنالیت بر همکنش کننده با سطح عنصر حسگر متناسب است . حسگرهای میکروکانتیلور به هیچ برچسبی (Label) جهت پاسخ به حضور مولکول روی سطح زیست حسگر نیاز ندارند. در روش های بدون برچسب می توان از نمونه های اصلاح نشده استفاده کرد، در نتیجه امکان قرائت پاسخ در زمان واقعی فراهم می شود. حسگرهای نانومکانیکی حساسیت بالایی در یک ناحیه کوچک (۱۰۰μm2) در مقایسه با زیست حسگرهای بدون برچسب دیگر نظیر تشدید پلاسمون سطحی (SPR) و ریز ترازوی بلور کوارتز (Quarrtz Crystal Microbalance-QCMB)دارند . زمانیکه اتم های سطح کانتیلور تحت بازآرایی ناشی از جذب سطحی گونه های شیمیایی قرار می گیرند، تغییرات مهمی در فشار روی سطح اتفاق می افتد. این تغییرات کششی یا تراکمی به طبیعت گونه جذب شده بستگی دارد . روش استاتیک یک تکنیک آشکارسازی dc (جریان مستقیم) است که انحراف ناشی از فشار اتصال مولکول هدف به پذیرنده در سطح میکروکانتیلور را آشکارسازی می کند. روش دینامیک آشکارسازی ac (جریان متناوب) است که تغییرات جرم کانتیلور را با بهره گرفتن از جابه جایی فرکانس رزونانسی آشکارسازی می-کند .
رایج ترین سیستم های قرائت
تکمیل یک سیستم قرائت با ظرفیت نشان دادن تغییرات با دقت nm ضروری است. برای این منظور روش های آشکارسازی استاتیک و دینامیک تأیید شده اند که بسیار حساس اند .
روش استاتیک
انعطاف پذیری کانتیلور در این روش سبب می شود تا اتصال مولکول هدف به پذیرنده که بر سطح کانتیلور تثبیت شده منجر به انحراف و خمیدگی در کانتیلور شود. این شیوه اجازه می دهد حسگر تغییرات بینهایت کوچک ناشی از جذب سطحی مولکولی را اندازه بگیرد. به این علت کانتیلورها زیستحسگرهای بسیار حساسی هستند و با تکنیک کانتیلور، آشکارسازی فشار سطحی تا حد۴-۱۰ N/m ممکن است. چنین اندازه گیری همچنین کمی و مرتبط با غلظت آنالیت موردنظر است. چندین تکنیک برای آشکارسازی خمیدگی کانتیلور بکار می روند که تکنیک های نوری و مقاومت پیزو و روشهای خازنی معمولترین روش ها هستند. تحت شرایط واقعی حسگرها باید در طولانی مدت پایدار و نسبت به مولکول هدف حساس و انتخابگر باشند .
روش های نوری
الف- نور لیزر بر انتهای آزاد کانتیلور که به عنوان آیینه عمل می کند متمرکز می شود. به منظور افزایش انعکاس کانتیلورهای تجاری عمدتاً با لایه نازکی از طلا پوشش داده می شوند. نور منعکس شده به آشکارساز نوری برخورد می کند. وقتی کانتیلور خم می شود نور لیزر بر روی آشکارساز نوری حرکت می کند. فاصله طی شده توسط محور لیزر با انحراف کانتیلور متناسب بوده و با فاصله کانتیلور- آشکارساز نوری افزایش می یابد که باید در کالیبراسیون لحاظ شود. نکته قابل توجه در این روش این است که شیب در نقطه برخورد لیزر به کانتیلور جهت تعیین نسبت خمیدگی کانتیلور به جابه جایی تنظیم شود.
-این روش، تفکیک در حد آنگسترم را فراهم می کند که به آسانی انجام می گیرد. مشکل عمده این تکنیک این است که نیاز به ابزارهای خارجی برای اندازه گیری انحراف دارد. بنابراین چینش متوالی و کالیبره کردن آن بسیار وقت گیر است.
برای بدست آوردن پاسخ آرایه ها به این روش یک چالش تکنولوژیکی وجود دارد چرا که به آرایه ای از منابع لیزر به تعداد آنالیت های مورد شناسایی نیاز است. در این تکنیک ترتیب on و off هر منبع لیزر برای اجتناب از همپوشانی محورهای منحرف شده روی آشکارساز نوری ضروری است. این مشکل عمدتاً با بهره گرفتن از روبش منبع لیزر حل می شود و محور لیزر مرتباً طول آرایه را اسکن می کند.
ب- برای مینیاتوری کردن (Miniaturization)، کانتیلور باید بصورت تجمعی با یک سیستم قرائت ساخته شود تا از تنظیمات خارجی و اثرات محیطی اجتناب شود. یک راه برای تأمین چنین هدفی استفاده از نوعی سیستم های مجتمع نوری است که در آن میزان خمیدگی از طریق نشان دادن تغییرات در شدت نور انتقال یافته از طریق کانتیلور که بعنوان انتقال دهنده موج عمل می کند تعیین می شود. نور پس از ورود به سیستم از طریق انتقال دهنده موج، ورودی عرض شکاف را به سمت کانتیلور طی می کند و پس از کوپل به کانتیلور مسیر خود را ادامه می دهد و از طریق موج بر خروجی از سیستم خارج می شود. وقتی کانتیلور خم می شود مقداری از نوری که می تواند به موج بر کانتیلور کوپل شود کاهش می یابد و شدت نور خروجی افت می کند. از تغییرات شدت نور می توان به میزان خمیدگی کانتیلور پی برد . زیست حسگرهای نوری نسبت به انواع دیگر زیست حسگرها از امتیازاتی چون آشکارسازی های چندآنالیتی و مونیتورینگ پیوسته برخوردارند .
کانتیلورهای پیزو